| Question                                                                                        | Scheme                                                                                                        | Marks          | AOs    |  |  |
|-------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|----------------|--------|--|--|
| 1(a)                                                                                            | $V = \pi r^2 h = 355 \implies h = 355$                                                                        |                |        |  |  |
|                                                                                                 | $v = \pi r n = 355 \Longrightarrow n = \frac{\pi r^2}{\pi r^2}$                                               | D1             | 1 1h   |  |  |
|                                                                                                 | $\left(\text{or } rh = \frac{355}{\pi r} \text{ or } \pi rh = \frac{355}{r}\right)$                           | DI             | 1.10   |  |  |
|                                                                                                 | $C = 0.04 \left( \pi r^2 + 2\pi rh \right) + 0.09 \left( \pi r^2 \right)$                                     | M1             | 3.4    |  |  |
|                                                                                                 | $C = 0.13\pi r^2 + 0.08\pi rh = 0.13\pi r^2 + 0.08\pi r \left(\frac{355}{\pi r^2}\right)$                     | dM1            | 2.1    |  |  |
|                                                                                                 | $C = 0.13\pi r^2 + \frac{28.4}{r} *$                                                                          | A1*            | 1.1b   |  |  |
|                                                                                                 |                                                                                                               | (4)            |        |  |  |
| <b>(b)</b>                                                                                      | $\frac{dC}{dt} = 0.26\pi r - \frac{28.4}{2}$                                                                  | M1             | 3.4    |  |  |
|                                                                                                 | $\frac{dr}{r^2}$                                                                                              | A1             | 1.1b   |  |  |
|                                                                                                 | $\frac{\mathrm{d}C}{\mathrm{d}r} = 0 \Longrightarrow r^3 = \frac{28.4}{0.26\pi} \Longrightarrow r = \dots$    | M1             | 1.1b   |  |  |
|                                                                                                 | $r = \sqrt[3]{\frac{1420}{13\pi}} = 3.26$                                                                     | A1             | 1.1b   |  |  |
|                                                                                                 |                                                                                                               | (4)            |        |  |  |
| (c)                                                                                             | $\left(\frac{d^2C}{dr^2}\right) = 0.26\pi + \frac{56.8}{r^3} = 0.26\pi + \frac{56.8}{"3.26"}^3$               | M1             | 1.1b   |  |  |
|                                                                                                 | $\left(\frac{d^2C}{dr^2}\right) = \left(2.45\right) > 0 \text{ Hence minimum (cost)}$                         | A1             | 2.4    |  |  |
| ·                                                                                               |                                                                                                               | (2)            |        |  |  |
| ( <b>d</b> )                                                                                    | $C = 0.13\pi ("3.26")^2 + \frac{28.4}{"3.26"}$                                                                | M1             | 3.4    |  |  |
|                                                                                                 | ( <i>C</i> =)13                                                                                               | A1             | 1.1b   |  |  |
|                                                                                                 |                                                                                                               | (2)            |        |  |  |
|                                                                                                 |                                                                                                               | (12            | marks) |  |  |
|                                                                                                 | Notes                                                                                                         |                |        |  |  |
| (a)                                                                                             |                                                                                                               |                |        |  |  |
| B1: Co<br>sub                                                                                   | rrect expression for <i>h</i> or <i>rh</i> or $\pi rh$ in terms of <i>r</i> . This may be implied ostitution. | d by their lat | er     |  |  |
| M1: Scored for the sum of the three terms of the form $0.04r^2$ , $0.09r^2$ and $0.04 \timesrh$ |                                                                                                               |                |        |  |  |
| Th                                                                                              | e 0.04× <i>rh</i> may be implied by eg 0.04× <i>r</i> × $\frac{355}{\pi r^2}$ if <i>h</i> has already be      | en replaced    |        |  |  |

dM1: Substitutes h or rh or  $\pi rh$  into their equation for C which must be of an allowable form (see above) to obtain an equation connecting C and r. It is dependent on a correct expression for h or rh or  $\pi rh$  in terms of r

Achieves given answer with no errors. Allow Cost instead of C but they cannot just have A1\*: an expression. As a minimum you must see the separate equation for volume the two costs for the top and bottom separate before combining a substitution before seeing the  $\frac{28.4}{r}$  term Eg 355 =  $\pi r^2 h$  and  $C = 0.04\pi r^2 + 0.09\pi r^2 + 0.04 \times 2\pi r h = 0.13\pi r^2 + 0.08\pi \times \left(\frac{355}{\pi r}\right)^2$ (b) Differentiates to obtain at least  $r^{-1} \rightarrow r^{-2}$ M1: Correct derivative. A1: Sets  $\frac{dC}{dr} = 0$  and solves for *r*. There must have been some attempt at differentiation of the M1: equation for  $C(...r^2 \rightarrow ...r \text{ or } ...r^{-1} \rightarrow ...r^{-2})$  Do not be concerned with the mechanics of their rearrangement and do not withhold this mark if their solution for r is negative A1: Correct value for r. Allow exact value or awrt 3.26 (c) Finds  $\frac{d^2C}{dr^2}$  at their (positive) *r* or considers the sign of  $\frac{d^2C}{dr^2}$ . M1: This mark can be scored as long as their second derivative is of the form  $A + \frac{B}{r^3}$  where A and B are non zero A1: Requires A correct  $\frac{d^2C}{dr^2}$ Either • deduces  $\frac{d^2C}{dr^2} > 0$  for r > 0 (without evaluating). There must be some minimal explanation as to why it is positive. • substitute their positive r into  $\frac{d^2C}{dr^2}$  without evaluating and deduces  $\frac{d^2C}{dr^2} > 0$  for r • evaluate  $\frac{d^2C}{dr^2}$  (which must be awrt 2.5) and deduces  $\frac{d^2C}{dr^2} > 0$  for r > 0(d) Uses the model and their positive r found in (b) to find the minimum cost. Their rM1: embedded in the expression is sufficient. May be seen in (b) but must be used in (d).

(C =) 13 ignore units

A1:

| Question                                                                                                                                                                                                                                                                              | Scheme                                                                                                        | Marks | AOs          |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|-------|--------------|--|--|
| 2 (a)                                                                                                                                                                                                                                                                                 | $\left\{\frac{\mathrm{d}y}{\mathrm{d}x}\right\} 2x^2 - 7x - 4$                                                |       | 1.1b<br>1.1b |  |  |
|                                                                                                                                                                                                                                                                                       |                                                                                                               | (2)   |              |  |  |
| (b)                                                                                                                                                                                                                                                                                   | Attempts to solve $\left\{\frac{dy}{dx}=\right\}2x^2-7x-40$<br>e.g., $(2x+1)(x-4)=0$ leading to $x=$ and $x=$ | M1    | 1.1b         |  |  |
|                                                                                                                                                                                                                                                                                       | Correct critical values $x = -\frac{1}{2}, 4$                                                                 | A1    | 1.1b         |  |  |
|                                                                                                                                                                                                                                                                                       | Chooses inside region for their critical values                                                               | dM1   | 1.1b         |  |  |
|                                                                                                                                                                                                                                                                                       | Accept either $-\frac{1}{2} < x < 4$ or $-\frac{1}{2} \le x \le 4$                                            | A1    | 1.1b         |  |  |
|                                                                                                                                                                                                                                                                                       |                                                                                                               | (4)   |              |  |  |
|                                                                                                                                                                                                                                                                                       |                                                                                                               | (6 n  | narks)       |  |  |
| Notes:                                                                                                                                                                                                                                                                                |                                                                                                               |       |              |  |  |
| Allow for $5 \rightarrow 0$<br>A1: $\left\{\frac{dy}{dx}=\right\}2x^2-7x-4$<br>(b)<br>M1: Sets their $\frac{dy}{dx}0$ where may be an equality or an inequality and proceeds to find two values for x from a 3TQ using the usual rules. This may be implied by their critical values. |                                                                                                               |       |              |  |  |
| A1: Co                                                                                                                                                                                                                                                                                | rrect critical values $x \dots -\frac{1}{2}, 4$                                                               |       |              |  |  |
| These may come directly from a calculator and might only be seen on a sketch.<br><b>dM1:</b> Chooses the inside region for their critical values.<br><b>A1:</b> Accept either $\frac{1}{1} < x < 4$ , but not $x < x = \frac{1}{1} < x < 4$ .                                         |                                                                                                               |       |              |  |  |
| Condone, e.g., $x > -\frac{1}{2}$ , $x < 4$ or $x > -\frac{1}{2}$ and $x < 4$ or $\left\{x : x > -\frac{1}{2}\right\} \cap \left\{x : x < 4\right\}$                                                                                                                                  |                                                                                                               |       |              |  |  |
| or $x \in \left(-\frac{1}{2}, 4\right)$ or $x \in \left[-\frac{1}{2}, 4\right]$                                                                                                                                                                                                       |                                                                                                               |       |              |  |  |
| Note: You may see $x < -\frac{1}{2}$ , $x < 4$ in their initial work before $-\frac{1}{2} < x < 4$ . Condone this so long as                                                                                                                                                          |                                                                                                               |       |              |  |  |
| it is clear that the $-\frac{1}{2} < x < 4$ is their final answer.                                                                                                                                                                                                                    |                                                                                                               |       |              |  |  |
|                                                                                                                                                                                                                                                                                       |                                                                                                               |       |              |  |  |

incorrectly expanded

| Question | Scheme                                                                                                                                                                                                                                 | Marks    | AOs         |  |  |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------------|--|--|
| 3        | $y = \frac{x-4}{2+\sqrt{x}} \Longrightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{2+\sqrt{x}-(x-4)\frac{1}{2}x^{-\frac{1}{2}}}{\left(2+\sqrt{x}\right)^2}$                                                                           | M1<br>A1 | 2.1<br>1.1b |  |  |
|          | $=\frac{2+\sqrt{x}-(x-4)\frac{1}{2}x^{-\frac{1}{2}}}{\left(2+\sqrt{x}\right)^2}=\frac{2+\sqrt{x}-\frac{1}{2}\sqrt{x}+2x^{-\frac{1}{2}}}{\left(2+\sqrt{x}\right)^2}=\frac{2\sqrt{x}+\frac{1}{2}x+2}{\sqrt{x}\left(2+\sqrt{x}\right)^2}$ | M1       | 1.1b        |  |  |
|          | $=\frac{x+4\sqrt{x}+4}{2\sqrt{x}(2+\sqrt{x})^{2}}=\frac{(2+\sqrt{x})^{2}}{2\sqrt{x}(2+\sqrt{x})^{2}}=\frac{1}{2\sqrt{x}}$                                                                                                              | A1       | 2.1         |  |  |
|          |                                                                                                                                                                                                                                        | (4)      |             |  |  |
|          | (4 marks)                                                                                                                                                                                                                              |          |             |  |  |
| Notes    |                                                                                                                                                                                                                                        |          |             |  |  |

M1: Attempts to use a correct rule e.g. quotient or product (& chain) rule to achieve the following forms Quotient :  $\frac{\alpha(2+\sqrt{x})-\beta(x-4)x^{-\frac{1}{2}}}{(2+\sqrt{x})^2}$  but be tolerant of attempts where the  $(2+\sqrt{x})^2$  has been

Product:  $\alpha (2 + \sqrt{x})^{-1} + \beta x^{-\frac{1}{2}} (x - 4) (2 + \sqrt{x})^{-2}$ Alternatively with  $t = \sqrt{x}$ ,  $y = \frac{t^2 - 4}{2 + t} \Rightarrow \frac{dy}{dt} = \frac{dy}{dt} \times \frac{dt}{dx} = \frac{2t(2 + t) - (t^2 - 4)}{(2 + t)^2} \times \frac{1}{2}x^{-\frac{1}{2}}$  with same rules

A1: Correct derivative in any form. Must be in terms of a single variable (which could be t) M1: Following a correct attempt at differentiation, it is scored for multiplying both numerator and denominator by  $\sqrt{x}$  and collecting terms to form a single fraction. It can also be scored from  $\frac{uv'-vu'}{v'}$ 

For the  $t = \sqrt{x}$ , look for an attempt to simplify  $\frac{t^2 + 4t + 4}{(2+t)^2} \times \frac{1}{2t}$ 

A1: Correct expression showing all key steps with no errors or omissions.  $\frac{dy}{dx}$  must be seen at least once

| Question | Scheme                                                                                                                          | Marks    | AOs         |  |  |
|----------|---------------------------------------------------------------------------------------------------------------------------------|----------|-------------|--|--|
| 3        | $y = \frac{x-4}{2+\sqrt{x}} \Longrightarrow y = \frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}{2+\sqrt{x}} = \sqrt{x}-2$ | M1<br>A1 | 2.1<br>1.1b |  |  |
|          | $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{2\sqrt{x}}$                                                                         | M1<br>A1 | 1.1b<br>2.1 |  |  |
|          |                                                                                                                                 | (4)      | 2.1         |  |  |
|          | (4 marks)                                                                                                                       |          |             |  |  |
| Notes    |                                                                                                                                 |          |             |  |  |

M1: Attempts to use difference of two squares. Can also be scored using

$$t = \sqrt{x} \Rightarrow y = \frac{t^2 - 4}{t + 2} \Rightarrow y = \frac{(t + 2)(t - 2)}{t + 2}$$
  
A1:  $y = \sqrt{x} - 2$  or  $y = t - 2$ 

M1: Attempts to differentiate an expression of the form  $y = \sqrt{x} + b$ 

A1: Correct expression showing all key steps with no errors or omissions.  $\frac{dy}{dx}$  must be seen at least once

| Question                                                            | Scheme                                                                                                                                                                                           | Marks    | AOs          |
|---------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------------|
| 4(a)(i)                                                             | $\frac{dy}{dx} = 20x^3 - 72x^2 + 84x - 32$                                                                                                                                                       | M1<br>A1 | 1.1b<br>1.1b |
| (ii)                                                                | $\frac{d^2 y}{dx^2} = 60x^2 - 144x + 84$                                                                                                                                                         | Alft     | 1.1b         |
|                                                                     | <u> </u>                                                                                                                                                                                         | (3)      |              |
| (b)(i)                                                              | $x = 1 \Longrightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = 20 - 72 + 84 - 32$                                                                                                                      | M1       | 1.1b         |
|                                                                     | $\frac{\mathrm{d}y}{\mathrm{d}x} = 0$ so there is a stationary point at $x = 1$                                                                                                                  | A1       | 2.1          |
|                                                                     | Alternative for (b)(i)                                                                                                                                                                           |          |              |
|                                                                     | $20x^{3} - 72x^{2} + 84x - 32 = 4(x-1)^{2}(5x-8) = 0 \Longrightarrow x = \dots$                                                                                                                  | M1       | 1.1b         |
|                                                                     | When $x = 1$ , $\frac{dy}{dx} = 0$ so there is a stationary point                                                                                                                                | A1       | 2.1          |
| (b)(ii)                                                             | Note that in (b)(ii) there are no marks for <u>just</u> evaluating $\left(\frac{d^2y}{dx^2}\right)_{x=1}$                                                                                        |          |              |
|                                                                     | E.g. $\left(\frac{d^2 y}{dx^2}\right)_{x=0.8} = \dots \left(\frac{d^2 y}{dx^2}\right)_{x=1.2} = \dots$                                                                                           | M1       | 2.1          |
|                                                                     | $\left(\frac{d^2 y}{dx^2}\right)_{x=0.8} > 0, \qquad \left(\frac{d^2 y}{dx^2}\right)_{x=1.2} < 0$ Hence point of inflection                                                                      | A1       | 2.2a         |
|                                                                     |                                                                                                                                                                                                  | (4)      |              |
|                                                                     | Alternative 1 for (b)(ii)                                                                                                                                                                        |          |              |
|                                                                     | $\left(\frac{d^2 y}{dx^2}\right)_{x=1} = 60x^2 - 144x + 84 = 0 \text{ (is inconclusive)}$ $\left(\frac{d^3 y}{dx^3}\right) = 120x - 144 \Longrightarrow \left(\frac{d^3 y}{dx^3}\right) = \dots$ | M1       | 2.1          |
|                                                                     | $\left(\frac{d^2 y}{dx^2}\right)_{x=1} = 0  \text{and}  \left(\frac{d^3 y}{dx^3}\right)_{x=1} \neq 0$ Hence point of inflection                                                                  | A1       | 2.2a         |
|                                                                     | Alternative 2 for (b)(ii)                                                                                                                                                                        |          |              |
|                                                                     | E.g. $\left(\frac{dy}{dx}\right)_{x=0.8} = \dots  \left(\frac{dy}{dx}\right)_{x=1.2} = \dots$                                                                                                    | M1       | 2.1          |
|                                                                     | $\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)_{x=0.8} < 0,  \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)_{x=1.2} < 0$                                                                            | A1       | 2.2a         |
|                                                                     | Hence point of inflection                                                                                                                                                                        |          |              |
|                                                                     |                                                                                                                                                                                                  |          |              |
|                                                                     | Notes                                                                                                                                                                                            | (7       | marks)       |
| (a)(i)<br>M1: $x^n \rightarrow$<br>A1: $\frac{dy}{dx} =$<br>(a)(ii) | $x^{n-1}$ for at least one power of $x$<br>$20x^3 - 72x^2 + 84x - 32$                                                                                                                            |          |              |

A1ft: Achieves a correct  $\frac{d^2 y}{dx^2}$  for their  $\frac{dy}{dx} = 20x^3 - 72x^2 + 84x - 32$ (b)(i) M1: Substitutes x = 1 into their  $\frac{dy}{dr}$ A1: Obtains  $\frac{dy}{dx} = 0$  following a correct derivative and makes a conclusion which can be minimal e.g. tick, QED etc. which may be in a preamble e.g. stationary point when  $\frac{dy}{dt} = 0$  and then shows  $\frac{dy}{dr} = 0$ **Alternative:** M1: Attempts to solve  $\frac{dy}{dx} = 0$  by factorisation. This may be by using the factor of (x - 1) or possibly using a calculator to find the roots and showing the factorisation. Note that they may divide by 4 before factorising which is acceptable. Need to either see either  $4(x-1)^2(5x-8)$  or  $(x-1)^2(5x-8)$  for the factorisation or  $x=\frac{8}{5}$  and x=1 seen as the roots. A1: Obtains x = 1 and makes a conclusion as above (b)(ii)M1: Considers the value of the second derivative either side of x = 1. Do not be too concerned with the interval for the method mark. (NB  $\frac{d^2 y}{dx^2} = (x-1)(60x-84)$  so may use this factorised form when considering x < 1, x > 1 for sign change of second derivative) A1: Fully correct work including a correct  $\frac{d^2y}{dr^2}$  with a reasoned conclusion indicating that the stationary point is a point of inflection. Sufficient reason is e.g. "sign change"/ ">0, < 0". If values are given they should be correct (but be generous with accuracy) but also just allow ">0" and "< 0" provided they are correctly paired. The interval must be where x < 1.4Alternative 1 for (b)(ii) M1: Shows that second derivative at x = 1 is zero and then finds the third derivative at x = 1A1: Fully correct work including a correct  $\frac{d^2y}{dr^2}$  with a reasoned conclusion indicating that stationary point is a point of inflection. Sufficient reason is " $\neq 0$ " but must follow a correct third derivative and a correct value if evaluated. For reference  $\left(\frac{d^3y}{dx^3}\right)_{1} = -24$ Alternative 2 for (b)(ii) M1: Considers the value of the first derivative either side of x = 1. Do not be too concerned with the interval for the method mark. A1: Fully correct work with a reasoned conclusion indicating that stationary point is a point of inflection. Sufficient reason is e.g. "same sign"/"both negative"/"< 0, < 0". If values are given they should be correct (but be generous with accuracy). The interval must be where x < 1.40.7 0.9 1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.8 x -3.2 -1.62 -0.64 -0.14 f'(x) -32 -24.3 -17.92 -12.74 -8.64 -5.5 0 57.6 46.2 f''(x) 84 70.2 36 27 19.2 12.6 7.2 3 0

| x      | 1.1  | 1.2   | 1.3   | 1.4   | 1.5  | 1.6 | 1.7  |
|--------|------|-------|-------|-------|------|-----|------|
| f'(x)  | -0.1 | -0.32 | -0.54 | -0.64 | -0.5 | 0   | 0.98 |
| f''(x) | -1.8 | -2.4  | -1.8  | 0     | 3    | 7.2 | 12.6 |

| Question                                                                                 | Scheme                                                               | Marks | AOs  |  |  |
|------------------------------------------------------------------------------------------|----------------------------------------------------------------------|-------|------|--|--|
| 5 (a)                                                                                    | 2 < <i>x</i> < 6                                                     | B1    | 1.1b |  |  |
|                                                                                          |                                                                      | (1)   |      |  |  |
| (b)                                                                                      | States either $k > 8$ or $k < 0$                                     | M1    | 3.1a |  |  |
|                                                                                          | States e.g. $\{k: k > 8\} \cup \{k: k < 0\}$                         | A1    | 2.5  |  |  |
|                                                                                          |                                                                      | (2)   |      |  |  |
| (c)                                                                                      | Please see notes for alternatives                                    |       |      |  |  |
|                                                                                          | States $y = ax(x-6)^2$ or $f(x) = ax(x-6)^2$                         | M1    | 1.1b |  |  |
|                                                                                          | Substitutes (2,8) into $y = ax(x-6)^2$ and attempts to find <i>a</i> | dM1   | 3.1a |  |  |
|                                                                                          | $y = \frac{1}{4}x(x-6)^2$ or $f(x) = \frac{1}{4}x(x-6)^2$ o.e        | A1    | 2.1  |  |  |
|                                                                                          |                                                                      | (3)   |      |  |  |
|                                                                                          | (6 marks)                                                            |       |      |  |  |
| Notes: Watch for answers written by the question. If they are beside the question and in |                                                                      |       |      |  |  |

the answer space, the one in the answer space takes precedence

(a)

B1: Deduces 2 < x < 6 o.e. such as x > 2, x < 6 x > 2 and x < 6  $\{x : x > 2\} \cap \{x : x < 6\}$   $x \in (2, 6)$ Condone attempts in which set notation is incorrectly attempted but correct values can be seen

or implied E.g.  $\{x > 2\} \cap \{x < 6\} \{x > 2, x < 6\}$ . Allow just the open interval (2, 6)

Do not allow for incorrect inequalities such as e.g. x > 2 or x < 6,  $\{x : x > 2\} \cup \{x : x < 6\}$   $x \in [2, 6]$ 

## (b)

- M1: Establishes a correct method by finding one of the (correct) inequalities States either k > 8 (condone  $k \ge 8$ ) or k < 0 (condone  $k \le 0$ ) Condone for this mark  $y \leftrightarrow k$  or  $f(x) \leftrightarrow k$  and 8 < k < 0
- A1: Fully correct solution in the form  $\{k:k>8\} \cup \{k:k<0\}$  or  $\{k|k>8\} \cup \{k|k<0\}$  either way around but condone  $\{k<0\} \cup \{k>8\}$ ,  $\{k:k<0\cup k>8\}$ ,  $\{k<0\cup k>8\}$ . It is not necessary to mention  $\mathbb{R}$ , e.g.  $\{k:k\in\mathbb{R}, k>8\} \cup \{k:k\in\mathbb{R}, k<0\}$  Look for  $\{\}$  and  $\cup$

Do not allow solutions not in set notation such as k < 0 or k > 8.

- (c)
- M1: Realises that the equation of *C* is of the form  $y = ax(x-6)^2$ . Condone with a = 1 for this mark. So award for sight of  $ax(x-6)^2$  even with a = 1
- dM1: Substitutes (2,8) into the form  $y = ax(x-6)^2$  and attempts to find the value for *a*. It is dependent upon having an equation, which the (y = ...) may be implied, of the correct form.

A1: Uses all of the information to form a correct **equation** for  $C = y = \frac{1}{4}x(x-6)^2$  o.e.

ISW after a correct answer. Condone  $f(x) = \frac{1}{4}x(x-6)^2$  but not  $C = \frac{1}{4}x(x-6)^2$ .

Allow this to be written down for all 3 marks

Examples of alternative methods

## Alternative I part (c):

Using the form  $y = ax^3 + bx^2 + cx$  and setting up then solving simultaneous equations. There are various versions of this but can be marked similarly

- M1: Realises that the equation of *C* is of the form  $y = ax^3 + bx^2 + cx$  and forms two equations in *a*, *b* and *c*. Condone with a = 1 for this mark. Note that the form  $y = ax^3 + bx^2 + cx + d$  is M0 until *d* is set equal to 0. There are four equations that could be formed, only two are necessary for this mark. Condone slips Using  $(6, 0) \implies 216a + 36b + 6c = 0$ Using  $(2, 8) \implies 8a + 4b + 2c = 8$ Using  $\frac{dy}{dx} = 0$  at  $x = 2 \implies 12a + 4b + c = 0$ Using  $\frac{dy}{dx} = 0$  at  $x = 6 \implies 108a + 12b + c = 0$
- dM1: Forms and solves three different equations, one of which must be using (2, 8) to find values for *a*, *b* and *c*. A calculator can be used to solve the equations
- A1: Uses all of the information to form a correct equation for  $C = y = \frac{1}{4}x^3 3x^2 + 9x$  o.e.

ISW after a correct answer. Condone  $f(x) = \frac{1}{4}x^3 - 3x^2 + 9x$ 

## Alternative II part (c) Using the gradient and integrating

M1: Realises that the gradient of *C* is zero at 2 and 6 so sets f'(x) = k(x-2)(x-6) oe **and** attempts to integrate. Condone with k = 1

dM1: Substitutes x = 2, y = 8 into  $f(x) = k(...x^3 + ...x + ...)$  and finds a value for k

A1: Uses all of the information to form a correct equation for  $C = y = \frac{3}{4} \left( \frac{1}{3}x^3 - 4x^2 + 12x \right)$  o.e.

ISW after a correct answer. Condone  $f(x) = \frac{3}{4} \left( \frac{1}{3}x^3 - 4x^2 + 12x \right)$ 

.....

| Question | Scheme                                                                                                                                    | Marks     | AOs          |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------|-----------|--------------|
| 6 (a)    | Sets up an allowable equation using volume = 240<br>E.g. $\frac{1}{2}r^2 \times 0.8h = 240 \Rightarrow h = \frac{600}{r^2}$ o.e.          | M1<br>A1  | 3.4<br>1.1b  |
|          | Attempts to substitute their $h = \frac{600}{r^2}$ into<br>$(S =)\frac{1}{2}r^2 \times 0.8 + \frac{1}{2}r^2 \times 0.8 + 2rh + 0.8rh$     | dM1       | 3.4          |
|          | $S = 0.8r^{2} + 2.8rh = 0.8r^{2} + 2.8 \times \frac{600}{r} = 0.8r^{2} + \frac{1680}{r} *$                                                | A1*       | 2.1          |
|          |                                                                                                                                           | (4)       |              |
| (b)      | $\left(\frac{\mathrm{d}S}{\mathrm{d}r}\right) = 1.6r - \frac{1680}{r^2}$                                                                  | M1<br>A1  | 3.1a<br>1.1b |
|          | Sets $\frac{dS}{dr} = 0 \Rightarrow r^3 = 1050$<br>r = awrt 10.2                                                                          | dM1<br>A1 | 2.1<br>1.1b  |
|          |                                                                                                                                           | (4)       |              |
| (c)      | Attempts to substitute their positive r into $\left(\frac{d^2S}{dr^2}\right) = 1.6 + \frac{3360}{r^3}$<br>and considers its value or sign | M1        | 1.1b         |
|          | E.g. Correct $\frac{d^2S}{dr^2} = 1.6 + \frac{3360}{r^3}$ with $\frac{d^2S}{dr^2}_{r=10.2} = 5 > 0$ proving a minimum value of S          | A1        | 1.1b         |
|          |                                                                                                                                           | (2)       |              |
|          |                                                                                                                                           | (1        | 0 marks)     |
| Notes:   |                                                                                                                                           |           |              |

Volume =  $0.4r^2h$ 



Total surface area =  $2rh+0.8r^2+0.8rh$ 

**M1:** Attempts to use the fact that the volume of the toy is  $240 \text{ cm}^3$ 

Sight of 
$$\frac{1}{2}r^2 \times 0.8 \times h = 240$$
 leading to  $h = \dots$  or  $rh = \dots$  scores this mark

But condone an equation of the correct form so allow for  $kr^2h = 240 \Rightarrow h = ...$  or rh = ...

A1: A correct expression for  $h = \frac{600}{r^2}$  or  $rh = \frac{600}{r}$  which may be left unsimplified.

This may be implied when you see an expression for S or part of S E.g  $2rh = 2r \times \frac{600}{r^2}$ 

**dM1:** Attempts to substitute their 
$$h = \frac{a}{r^2}$$
 o.e. such as  $hr = \frac{a}{r}$  into a **correct** expression for *S*

Sight of 
$$\frac{1}{2}r^2 \times 0.8 + \frac{1}{2}r^2 \times 0.8 + rh + rh + 0.8rh$$
 with an appropriate substitution

Simplified versions such as  $0.8r^2 + 2rh + 0.8rh$  used with an appropriate substitution is fine. A1\*: Correct work leading to the given result.

S =, SA = or surface area = must be seen at least once in the correct place The method must be made clear so expect to see evidence. For example

$$S = 0.8r^{2} + 2rh + 0.8rh \Rightarrow S = 0.8r^{2} + 2r \times \frac{600}{r^{2}} + 0.8r \times \frac{600}{r^{2}} \Rightarrow S = 0.8r^{2} + \frac{1680}{r} \text{ would be fine.}$$

(b) There is no requirement to see  $\frac{dS}{dr}$  in part (b). It may even be called  $\frac{dy}{dx}$ .

M1: Achieves a derivative of the form  $pr \pm \frac{q}{r^2}$  where p and q are non-zero constants

**A1:** Achieves  $\left(\frac{\mathrm{d}S}{\mathrm{d}r}\right) = 1.6r - \frac{1680}{r^2}$ 

**dM1:** Sets or implies that their  $\frac{dS}{dr} = 0$  and proceeds to  $mr^3 = n$ ,  $m \times n > 0$ . It is dependent upon a

correct attempt at differentiation. This mark may be implied by a correct answer to their  $pr - \frac{q}{r^2} = 0$ A1: r = awrt 10.2 or  $\sqrt[3]{1050}$ 

(c)

**M1:** Attempts to substitute their positive *r* (found in (b)) into  $\left(\frac{d^2S}{dr^2}\right)e\pm\frac{f}{r^3}$  where *e* and *f* are non zero and finds its value or sign.

Alternatively considers the sign of  $\left(\frac{d^2S}{dr^2}\right) = e \pm \frac{f}{r^3}$  (at their positive *r* found in (b))

Condone the  $\frac{d^2 S}{dr^2}$  to be  $\frac{d^2 y}{dx^2}$  or being absent, but only for this mark. **A1:** States that  $\frac{d^2 S}{dr^2}$  or  $S'' = 1.6 + \frac{3360}{r^3} = awrt 5 > 0$  proving a minimum value of S

This is dependent upon having achieved r = awrt 10 and a correct  $\frac{d^2S}{dr^2} = 1.6 + \frac{3360}{r^3}$ It can be argued without finding the value of  $\frac{d^2S}{dr^2}$ . E.g.  $\frac{d^2S}{dr^2} = 1.6 + \frac{3360}{r^3} > 0$  as r > 0, so minimum value of *S*. For consistency it is also dependent upon having achieved r = awrt 10Do **NOT** allow  $\frac{d^2y}{dx^2}$  for this mark

| Question                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Scheme                                                                                                                                                                                               | Marks         | AOs           |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|---------------|--|--|--|
| 7(a)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\{\mathbf{f}'(x) = \} \dots x^2 + \dots x + \dots \Longrightarrow \{\mathbf{f}''(x) = \} \dots x + \dots$                                                                                           | M1            | 1.1b          |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\left\{\mathbf{f}'(x) = \right\} 3x^2 + 4x - 8 \Longrightarrow \left\{\mathbf{f}''(x) = \right\} 6x + 4$                                                                                            | A1cso         | 1.1b          |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                      | (2)           |               |  |  |  |
| (b)(i)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $"6x + 4" = 0 \Longrightarrow x = "-\frac{2}{3}"$                                                                                                                                                    | B1ft          | 1.1b          |  |  |  |
| (ii)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $x , "-\frac{2}{3}"$ or $x < "-\frac{2}{3}"$                                                                                                                                                         | B1ft          | 2.2a          |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                      | (2)           |               |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                      |               | (4 marks)     |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Notes                                                                                                                                                                                                |               |               |  |  |  |
| <ul> <li>M1: For attempting to differentiate twice.<br/>It can be scored for any of: x<sup>3</sup> →x<sup>2</sup> →x or 2x<sup>2</sup> →x → k or -8x → k → 0 where are constants.<br/>You can ignore the lhs so do not be concerned what they call the first and/or second derivative, just look for their expressions.<br/>The indices do not need to be processed for this mark so allow for e.g. x<sup>3</sup> →x<sup>3-1</sup> →x<sup>3-1-1</sup></li> <li>A1cso: (f''(x)=) 6x+4 Correct second derivative from fully correct work. The "f''(x)=" is not required.<br/>Allow 6x<sup>1</sup> for 6x but not 4x<sup>0</sup> for 4 unless the 4x<sup>0</sup> becomes 4 later, e.g. in part (b).<br/>Do not apply isw so mark their final answer. E.g. if 6x + 4 becomes 3x + 2 score A0</li> </ul> |                                                                                                                                                                                                      |               |               |  |  |  |
| (b)<br>(i)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | h 2 h                                                                                                                                                                                                |               |               |  |  |  |
| <b>B1ft:</b> <i>ax</i> +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $b=0 \Rightarrow (x=)-\frac{b}{a}$ . This mark is for obtaining $x=-\frac{2}{3}$ or $x=-\frac{b}{a}$ which has                                                                                       | come from s   | olving an     |  |  |  |
| equa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | tion of the form $ax + b$ , $a, b \neq 0$ where $ax + b$ is their attempt to differ                                                                                                                  | entiate twice | e in part (a) |  |  |  |
| Allo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | w equivalent fractions e.g. $x = -\frac{4}{6}$ or equivalents for their $x = -\frac{b}{a}$ or an e                                                                                                   | exact decima  | l and isw.    |  |  |  |
| (ii)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2                                                                                                                                                                                                    |               |               |  |  |  |
| B1ft: Dedu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | uces $x_{,,-\frac{2}{3}}$ or follow through their single value of x from part (i) obtain                                                                                                             | ed from the   | ir attempt to |  |  |  |
| solve                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | an equation of the form $ax + b = 0$ , $a, b \neq 0$ where $ax + b$ was their att                                                                                                                    | empt to diff  | erentiate     |  |  |  |
| twice in part (a). Do not isw and mark their final answer.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                      |               |               |  |  |  |
| If 2 inequalities are given e.g. $x < "-\frac{2}{3}"$ , $x > "-\frac{2}{3}"$ without indicating which is their answer score B0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                      |               |               |  |  |  |
| Condone < for ,, and allow equivalent inequalities e.g. $-\frac{2}{3} > x$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                      |               |               |  |  |  |
| Allow equivalent fractions e.g. $x = -\frac{4}{6}$ or equivalents for their $x = -\frac{b}{a}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                      |               |               |  |  |  |
| Allow equivalent notation so these are all acceptable:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                      |               |               |  |  |  |
| <i>x</i> ,,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $x ,, "-\frac{2}{3}", x < "-\frac{2}{3}", \left(-\infty, "-\frac{2}{3}"\right], \left(-\infty, "-\frac{2}{3}"\right), \left\{x : x ,, "-\frac{2}{3}"\right\}, \left\{x : x < "-\frac{2}{3}"\right\}$ |               |               |  |  |  |
| Igno                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ignore any reference to values of y.                                                                                                                                                                 |               |               |  |  |  |
| Allov<br>Corre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Allow it decimal answers from (1) which may be inexact.<br>Correct answers in part (b) with no working in (a) can score 0011.                                                                        |               |               |  |  |  |